audio-reactive-led-strip/python/visualization.py
Scott Lawson 0e73fd1348 Improved GUI, fixed bugs, better visualizations
* Resolved an issue with the ESP8266 where gamma correction would be
performed twice. Changed GAMMA_CORRECTION to SOFTWARE_GAMMA_CORRECTION
to make a distinction between software and firmware gamma correction.
The ESP8266 does firmware gamma correction and dithering, while the
Raspberry Pi uses slightly more inferior software gamma correction.
Changed the software gamma table to match the gamma table used in the
ESP8266 firmware.

* Improved the spectrum visualization by using one of the color channels
to visualize the absolute value of the temporal derivative of the
spectrum. Also added a feature to reject the "common mode" spectral
components, which is analogous to the spectral DC component.

* Signficantly improved the GUI and added a frequency adjustment slider.
Adjusting the frequency range has a big impact on the visualization
output. Recommend using a high frequency range (something like 4 kHz -
10 kHz) when running the scrol visualization.
2017-01-04 22:12:12 -08:00

340 lines
12 KiB
Python

from __future__ import print_function
from __future__ import division
import time
import numpy as np
from scipy.ndimage.filters import gaussian_filter1d
import config
import microphone
import dsp
import led
_time_prev = time.time() * 1000.0
"""The previous time that the frames_per_second() function was called"""
_fps = dsp.ExpFilter(val=config.FPS, alpha_decay=0.002, alpha_rise=0.002)
"""The low-pass filter used to estimate frames-per-second"""
def frames_per_second():
"""Return the estimated frames per second
Returns the current estimate for frames-per-second (FPS).
FPS is estimated by measured the amount of time that has elapsed since
this function was previously called. The FPS estimate is low-pass filtered
to reduce noise.
This function is intended to be called one time for every iteration of
the program's main loop.
Returns
-------
fps : float
Estimated frames-per-second. This value is low-pass filtered
to reduce noise.
"""
global _time_prev, _fps
time_now = time.time() * 1000.0
dt = time_now - _time_prev
_time_prev = time_now
if dt == 0.0:
return _fps.value
return _fps.update(1000.0 / dt)
def interpolate(y, new_length):
"""Intelligently resizes the array by linearly interpolating the values
Parameters
----------
y : np.array
Array that should be resized
new_length : int
The length of the new interpolated array
Returns
-------
z : np.array
New array with length of new_length that contains the interpolated
values of y.
"""
if len(y) == new_length:
return y
x_old = np.linspace(0, 1, len(y))
x_new = np.linspace(0, 1, new_length)
z = np.interp(x_new, x_old, y)
return z
r_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
alpha_decay=0.2, alpha_rise=0.99)
g_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
alpha_decay=0.05, alpha_rise=0.3)
b_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
alpha_decay=0.1, alpha_rise=0.5)
common_mode = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
alpha_decay=0.99, alpha_rise=0.01)
p_filt = dsp.ExpFilter(np.tile(1, (3, config.N_PIXELS // 2)),
alpha_decay=0.1, alpha_rise=0.99)
p = np.tile(1.0, (3, config.N_PIXELS // 2))
gain = dsp.ExpFilter(np.tile(0.01, config.N_FFT_BINS),
alpha_decay=0.001, alpha_rise=0.99)
def visualize_scroll(y):
"""Effect that originates in the center and scrolls outwards"""
global p
y = np.copy(y)**2.0
gain.update(y)
y /= gain.value
y *= 255.0
r = int(max(y[:len(y) // 3]))
g = int(max(y[len(y) // 3: 2 * len(y) // 3]))
b = int(max(y[2 * len(y) // 3:]))
# Scrolling effect window
p = np.roll(p, 1, axis=1)
p *= 0.98
p = gaussian_filter1d(p, sigma=0.2)
# Create new color originating at the center
p[0, 0] = r
p[1, 0] = g
p[2, 0] = b
# Update the LED strip
return np.concatenate((p[:, ::-1], p), axis=1)
def visualize_energy(y):
"""Effect that expands from the center with increasing sound energy"""
global p
y = np.copy(y)
gain.update(y)
y /= gain.value
# Scale by the width of the LED strip
y *= float((config.N_PIXELS // 2) - 1)
# Map color channels according to energy in the different freq bands
scale = 0.9
r = int(np.mean(y[:len(y) // 3]**scale))
g = int(np.mean(y[len(y) // 3: 2 * len(y) // 3]**scale))
b = int(np.mean(y[2 * len(y) // 3:]**scale))
# Assign color to different frequency regions
p[0, :r] = 255.0
p[0, r:] = 0.0
p[1, :g] = 255.0
p[1, g:] = 0.0
p[2, :b] = 255.0
p[2, b:] = 0.0
p_filt.update(p)
p = np.round(p_filt.value)
# Apply substantial blur to smooth the edges
p[0, :] = gaussian_filter1d(p[0, :], sigma=4.0)
p[1, :] = gaussian_filter1d(p[1, :], sigma=4.0)
p[2, :] = gaussian_filter1d(p[2, :], sigma=4.0)
# Set the new pixel value
return np.concatenate((p[:, ::-1], p), axis=1)
prev_spectrum = np.tile(0.01, config.N_PIXELS // 2)
def visualize_spectrum(y):
"""Effect that maps the Mel filterbank frequencies onto the LED strip"""
global prev_spectrum
y = np.copy(interpolate(y, config.N_PIXELS // 2))
common_mode.update(gaussian_filter1d(y, sigma=2.0))
diff = y - prev_spectrum
prev_spectrum = np.copy(y)
r = gaussian_filter1d(y, sigma=0.5) - common_mode.value
# g = gaussian_filter1d(y, sigma=0.5) - common_mode.value
b = gaussian_filter1d(y, sigma=0.0) - common_mode.value
# Update temporal filters
r = r_filt.update(r)
# g = g_filt.update(g)
g = np.abs(diff)
b = b_filt.update(b)
# Mirror the color channels for symmetric output
pixel_r = np.concatenate((r[::-1], r))
pixel_g = np.concatenate((g[::-1], g))
pixel_b = np.concatenate((b[::-1], b))
output = np.array([pixel_r, pixel_g, pixel_b]) * 255.0
return output
fft_plot_filter = dsp.ExpFilter(np.tile(1e-1, config.N_FFT_BINS),
alpha_decay=0.5, alpha_rise=0.99)
mel_gain = dsp.ExpFilter(np.tile(1e-1, config.N_FFT_BINS),
alpha_decay=0.01, alpha_rise=0.99)
mel_smoothing = dsp.ExpFilter(np.tile(1e-1, config.N_FFT_BINS),
alpha_decay=0.5, alpha_rise=0.99)
volume = dsp.ExpFilter(config.MIN_VOLUME_THRESHOLD,
alpha_decay=0.02, alpha_rise=0.02)
# Keeps track of the number of buffer overflows
# Lots of buffer overflows could mean that FPS is set too high
buffer_overflows = 1
def microphone_update(stream):
global y_roll, prev_rms, prev_exp
# Retrieve and normalize the new audio samples
try:
y = np.fromstring(stream.read(samples_per_frame), dtype=np.int16)
except IOError:
y = y_roll[config.N_ROLLING_HISTORY - 1, :]
global buffer_overflows
print('Buffer overflows: {0}'.format(buffer_overflows))
buffer_overflows += 1
# Normalize samples between 0 and 1
y = y / 2.0**15
# Construct a rolling window of audio samples
y_roll = np.roll(y_roll, -1, axis=0)
y_roll[-1, :] = np.copy(y)
y_data = np.concatenate(y_roll, axis=0)
volume.update(np.nanmean(y_data ** 2))
if volume.value < config.MIN_VOLUME_THRESHOLD:
print('No audio input. Volume below threshold. Volume:', volume.value)
led.pixels = np.tile(0, (3, config.N_PIXELS))
led.update()
else:
# Transform audio input into the frequency domain
XS, YS = dsp.fft(y_data, window=np.hamming)
# Remove half of the FFT data because of symmetry
YS = YS[:len(YS) // 2]
XS = XS[:len(XS) // 2]
# Construct a Mel filterbank from the FFT data
mel = np.atleast_2d(np.abs(YS)).T * dsp.mel_y.T
# Scale data to values more suitable for visualization
mel = np.mean(mel, axis=0)
mel = mel**2.0
# Gain normalization
mel_gain.update(np.max(gaussian_filter1d(mel, sigma=1.0)))
mel = mel / mel_gain.value
mel = mel_smoothing.update(mel)
# Map filterbank output onto LED strip
output = visualization_effect(mel)
led.pixels = output
led.update()
# Plot filterbank output
x = np.linspace(config.MIN_FREQUENCY, config.MAX_FREQUENCY, len(mel))
mel_curve.setData(x=x, y=fft_plot_filter.update(mel))
# Plot the color channels
r_curve.setData(y=led.pixels[0])
g_curve.setData(y=led.pixels[1])
b_curve.setData(y=led.pixels[2])
if config.USE_GUI:
app.processEvents()
if config.DISPLAY_FPS:
print('FPS {:.0f} / {:.0f}'.format(frames_per_second(), config.FPS))
# Number of audio samples to read every time frame
samples_per_frame = int(config.MIC_RATE / config.FPS)
# Array containing the rolling audio sample window
y_roll = np.random.rand(config.N_ROLLING_HISTORY, samples_per_frame) / 1e16
visualization_effect = visualize_spectrum
"""Visualization effect to display on the LED strip"""
if __name__ == '__main__':
if config.USE_GUI:
import pyqtgraph as pg
from pyqtgraph.Qt import QtGui, QtCore
# Create GUI window
app = QtGui.QApplication([])
view = pg.GraphicsView()
layout = pg.GraphicsLayout(border=(100,100,100))
view.setCentralItem(layout)
view.show()
view.setWindowTitle('Visualization')
view.resize(800,600)
# Mel filterbank plot
fft_plot = layout.addPlot(title='Filterbank Output', colspan=3)
fft_plot.setRange(yRange=[-0.1, 1.2])
fft_plot.disableAutoRange(axis=pg.ViewBox.YAxis)
x_data = np.array(range(1, config.N_FFT_BINS + 1))
mel_curve = pg.PlotCurveItem()
mel_curve.setData(x=x_data, y=x_data*0)
fft_plot.addItem(mel_curve)
# Visualization plot
layout.nextRow()
led_plot = layout.addPlot(title='Visualization Output', colspan=3)
led_plot.setRange(yRange=[-5, 260])
led_plot.disableAutoRange(axis=pg.ViewBox.YAxis)
# Pen for each of the color channel curves
r_pen = pg.mkPen((255, 30, 30, 200), width=4)
g_pen = pg.mkPen((30, 255, 30, 200), width=4)
b_pen = pg.mkPen((30, 30, 255, 200), width=4)
# Color channel curves
r_curve = pg.PlotCurveItem(pen=r_pen)
g_curve = pg.PlotCurveItem(pen=g_pen)
b_curve = pg.PlotCurveItem(pen=b_pen)
# Define x data
x_data = np.array(range(1, config.N_PIXELS + 1))
r_curve.setData(x=x_data, y=x_data*0)
g_curve.setData(x=x_data, y=x_data*0)
b_curve.setData(x=x_data, y=x_data*0)
# Add curves to plot
led_plot.addItem(r_curve)
led_plot.addItem(g_curve)
led_plot.addItem(b_curve)
# Frequency range label
freq_label = pg.LabelItem('')
# Frequency slider
def freq_slider_change(tick):
minf = freq_slider.tickValue(0)**2.0 * (config.MIC_RATE / 2.0)
maxf = freq_slider.tickValue(1)**2.0 * (config.MIC_RATE / 2.0)
t = 'Frequency range: {:.0f} - {:.0f} Hz'.format(minf, maxf)
freq_label.setText(t)
config.MIN_FREQUENCY = minf
config.MAX_FREQUENCY = maxf
dsp.create_mel_bank()
freq_slider = pg.TickSliderItem(orientation='bottom', allowAdd=False)
freq_slider.addTick((config.MIN_FREQUENCY / (config.MIC_RATE / 2.0))**0.5)
freq_slider.addTick((config.MAX_FREQUENCY / (config.MIC_RATE / 2.0))**0.5)
freq_slider.tickMoveFinished = freq_slider_change
freq_label.setText('Frequency range: {} - {} Hz'.format(
config.MIN_FREQUENCY,
config.MAX_FREQUENCY))
# Effect selection
active_color = '#16dbeb'
inactive_color = '#FFFFFF'
def energy_click(x):
global visualization_effect
visualization_effect = visualize_energy
energy_label.setText('Energy', color=active_color)
scroll_label.setText('Scroll', color=inactive_color)
spectrum_label.setText('Spectrum', color=inactive_color)
def scroll_click(x):
global visualization_effect
visualization_effect = visualize_scroll
energy_label.setText('Energy', color=inactive_color)
scroll_label.setText('Scroll', color=active_color)
spectrum_label.setText('Spectrum', color=inactive_color)
def spectrum_click(x):
global visualization_effect
visualization_effect = visualize_spectrum
energy_label.setText('Energy', color=inactive_color)
scroll_label.setText('Scroll', color=inactive_color)
spectrum_label.setText('Spectrum', color=active_color)
# Create effect "buttons" (labels with click event)
energy_label = pg.LabelItem('Energy')
scroll_label = pg.LabelItem('Scroll')
spectrum_label = pg.LabelItem('Spectrum')
energy_label.mousePressEvent = energy_click
scroll_label.mousePressEvent = scroll_click
spectrum_label.mousePressEvent = spectrum_click
energy_click(0)
# Layout
layout.nextRow()
layout.addItem(freq_label, colspan=3)
layout.nextRow()
layout.addItem(freq_slider, colspan=3)
layout.nextRow()
layout.addItem(energy_label)
layout.addItem(scroll_label)
layout.addItem(spectrum_label)
# Initialize LEDs
led.update()
# Start listening to live audio stream
microphone.start_stream(microphone_update)